
Package: zstdlite (via r-universe)
August 21, 2024

Type Package

Title Fast Compression and Serialization with 'Zstandard' Algorithm

Version 0.2.10

Maintainer Mike Cheng <mikefc@coolbutuseless.com>

Description Fast, compressed serialization of R objects using the
'Zstandard' algorithm. The included zstandard connection
('zstdfile()') can be used to read/write compressed data by any
code which supports R's built-in 'connections' mechanism.
Dictionaries are supported for more effective compression of
small data, and functions are provided for training these
dictionaries. This implementation provides an R interface to
advanced features of the 'Zstandard' 'C' library (available
from <https://github.com/facebook/zstd>).

URL https://github.com/coolbutuseless/zstdlite

BugReports https://github.com/coolbutuseless/zstdlite/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Copyright This package includes code from the 'Zstandard' library
owned by Meta Platforms, Inc. and affiliates. and created by
Yann Collet. See file 'inst/COPYRIGHTS' for details.

Suggests knitr, rmarkdown, testthat, bench

Depends R (>= 3.4.0)

VignetteBuilder knitr

Repository https://coolbutuseless.r-universe.dev

RemoteUrl https://github.com/coolbutuseless/zstdlite

RemoteRef HEAD

RemoteSha 746caa58366877737ca460dab2cd9e2672fb0067

1

https://github.com/facebook/zstd
https://github.com/coolbutuseless/zstdlite
https://github.com/coolbutuseless/zstdlite/issues

2 zstdfile

Contents
zstdfile . 2
zstd_cctx . 3
zstd_cctx_settings . 4
zstd_compress . 4
zstd_dctx . 6
zstd_dctx_settings . 7
zstd_dict_id . 7
zstd_info . 8
zstd_serialize . 9
zstd_train_dict_compress . 10
zstd_train_dict_serialize . 11
zstd_version . 12

Index 13

zstdfile Create a file connection which uses Zstandard compression.

Description

Create a file connection which uses Zstandard compression.

Usage

zstdfile(description, open = "", ..., cctx = NULL, dctx = NULL)

Arguments

description zstandard filename

open character string. A description of how to open the connection if it is to be opened
upon creation e.g. "rb". Default "" (empty string) means to not open the con-
nection on creation - user must still call open(). Note: If an "open" string
is provided, the user must still call close() otherwise the contents of the file
aren’t completely flushed until the connection is garbage collected.

... Other named arguments which override the contexts e.g. level = 20

cctx, dctx compression/decompression contexts created by zstd_cctx() and zstd_dctx().
Optional.

Details

This zstdfile() connection works like R’s built-in connections (e.g. gzfile(), xzfile()) but
using the Zstandard algorithm to compress/decompress the data.

This connection works with both ASCII and binary data, e.g. using readLines() and readBin().

zstd_cctx 3

Examples

Binary
tmp <- tempfile()
dat <- as.raw(1:255)
writeBin(dat, zstdfile(tmp, level = 20))
readBin(zstdfile(tmp), raw(), 1000)

Text
tmp <- tempfile()
txt <- as.character(mtcars)
writeLines(txt, zstdfile(tmp))
readLines(zstdfile(tmp))

zstd_cctx Initialise a ZSTD compression context

Description

Compression contexts can be re-used, meaning that they don’t have to be created each time a com-
pression function is called. This can make things faster when performing multiple compression
operations.

Usage

zstd_cctx(level = 3L, num_threads = 1L, include_checksum = FALSE, dict = NULL)

Arguments

level Compression level. Default: 3. Valid range is [-5, 22] with -5 representing the
mode with least compression and 22 representing the mode with most compres-
sion. Note level = 0 corresponds to the default level and is equivalent to level
= 3

num_threads Number of compression threads. Default 1. Using more threads can result in
faster compression, but the magnitude of this speed-up depends on lots of factors
e.g. cpu, drive speed, type of data compression level etc.

include_checksum

Include a checksum with the compressed data? Default: FALSE. If TRUE then
a 32-bit hash of the original uncompressed data will be appended to the com-
pressed data and checked for validity during decompression. See matching op-
tion for decompression in zstd_dctx() argument validate_checksum.

dict Dictionary. Default: NULL. Can either be a raw vector or a filename. This dic-
tionary can be created with zstd_train_dict_compress() , zstd_train_dict_seriazlie()
or any other tool supporting zstd dictionary creation. Note: compressed data
created with a dictionary must be decompressed with the same dictionary.

4 zstd_compress

Value

External pointer to a ZSTD Compression Context which can be passed to zstd_serialize() and
zstd_compress()

Examples

cctx <- zstd_cctx(level = 4)

zstd_cctx_settings Get the configuration settings of a compression context

Description

Get the configuration settings of a compression context

Usage

zstd_cctx_settings(cctx)

Arguments

cctx ZSTD compression context, as created by zstd_cctx()

Value

named list of configuration options

Examples

cctx <- zstd_cctx()
zstd_cctx_settings(cctx)

zstd_compress Compress/Decompress raw vectors and character strings.

Description

This function is appropriate when handling data from other systems e.g. data compressed with the
zstd command-line, or other compression programs.

zstd_compress 5

Usage

zstd_compress(x, ..., dst = NULL, cctx = NULL, use_file_streaming = FALSE)

zstd_decompress(
src,
type = "raw",
...,
dctx = NULL,
use_file_streaming = FALSE

)

Arguments

x Data to be compressed. This may be a raw vector, or a character string

... extra arguments passed to zstd_cctx() or zstd_dctx() context initializers.
Note: These argument are only used when cctx or dctx is NULL

dst destination in which to write the compressed data. If NULL (the default) data will
be returned as a raw vector. If a string, then this will be the filename to which
the data is written. dst may also be a connection object e.g. pipe(), file()
etc.

cctx ZSTD Compression Context created by zstd_cctx() or NULL. Default: NULL
will create a default compression context on-the-fly

use_file_streaming

Use the streaming interface when reading or writing to a file? This may reduce
memory allocations and make better use of mutlithreading. Default: FALSE

src Source from which compressed data is read. If a string, then this will be the
filename to read data from. dst may also be a connection object e.g. pipe(),
file() etc.

type Should data be returned as a ’raw’ vector or as a ’string’? Default: ’raw’

dctx ZSTD Decompression Context created by zstd_dctx() or NULL. Default: NULL
will create a default decompression context on-the-fly.

Value

Raw vector of compressed data, or NULL if file created with compressed data

Examples

With raw vectors
dat <- sample(as.raw(1:10), 1000, replace = TRUE)
vec <- zstd_compress(x = dat)
zstd_decompress(src = vec)

With files
tmp <- tempfile()
zstd_compress(x = dat, dst = tmp)
zstd_decompress(src = tmp)

6 zstd_dctx

With connections
tmp <- tempfile()
zstd_compress(x = dat, dst = file(tmp))
zstd_decompress(src = file(tmp))

zstd_dctx Initialise a ZSTD decompression context

Description

Decompression contexts can be re-used, meaning that they don’t have to be created each time a
decompression function is called. This can make things faster when performing multiple decom-
pression operations.

Usage

zstd_dctx(validate_checksum = TRUE, dict = NULL)

Arguments

validate_checksum

If a checksum is present on the comrpessed data, should the checksum be vali-
dated? Default: TRUE. Set to FALSE to ignore the checksum, which may lead to
a minor speed improvement. If no checksum is present in the compressed data,
then this option has no effect.

dict Dictionary. Default: NULL. Can either be a raw vector or a filename. This dic-
tionary can be created with zstd_train_dict_compress() , zstd_train_dict_seriazlie()
or any other tool supporting zstd dictionary creation. Note: compressed data
created with a dictionary must be decompressed with the same dictionary.

Value

External pointer to a ZSTD Decompression Context which can be passed to zstd_unserialize()
and zstd_decompress()

Examples

dctx <- zstd_dctx(validate_checksum = FALSE)

zstd_dctx_settings 7

zstd_dctx_settings Get the configuration settings of a decompression context

Description

Get the configuration settings of a decompression context

Usage

zstd_dctx_settings(dctx)

Arguments

dctx ZSTD decompression context, as created by zstd_dctx()

Value

named list of configuration options

Examples

dctx <- zstd_dctx()
zstd_dctx_settings(dctx)

zstd_dict_id Get the Dictionary ID of a dictionary or a vector compressed data.

Description

Dictionary IDs are generated automatically when a dictionary is created. When using a dictionary
for compression, the same dictionary must be used during decompression. ZSTD internally does
this check for matching IDs when attempting to decompress. This function exposes the dictionary
ID to aid in handling and tracking dictionaries in R.

Usage

zstd_dict_id(dict)

Arguments

dict raw vector or filename. This object could contain either a zstd dictionary, or a
compressed object. If it is a compressed object, then it will return the dictionary
id which was used to compress it.

8 zstd_info

Value

Signed integer value representing the Dictionary ID. If data does not represent a dictionary, or data
which was compressed with a dictionary, then a value of 0 is returned.

Examples

dict_file <- system.file("sample_dict.raw", package = "zstdlite", mustWork = TRUE)
dict <- readBin(dict_file, raw(), file.size(dict_file))
zstd_dict_id(dict)
compressed_mtcars <- zstd_serialize(mtcars, dict = dict)
zstd_dict_id(compressed_mtcars)

zstd_info Return information about the zstd stream

Description

Return information about the zstd stream

Usage

zstd_info(src)

Arguments

src raw vector, file or connection

Value

named list with compressed_size, uncompressed_size, dict_id and has_checksum. If an error
occurs, or the data does not appear to represent Zstandard compressed data, function returns NULL

Examples

data <- as.raw(sample(1:2, 10000, replace = TRUE))
cdata <- zstd_compress(data)
zstd_info(cdata)

zstd_serialize 9

zstd_serialize Serialize/Unserialize arbitrary R objects to a compressed stream of
bytes using Zstandard

Description

Serialize/Unserialize arbitrary R objects to a compressed stream of bytes using Zstandard

Usage

zstd_serialize(robj, ..., dst = NULL, cctx = NULL, use_file_streaming = FALSE)

zstd_unserialize(src, ..., dctx = NULL, use_file_streaming = FALSE)

Arguments

robj Any R object understood by base::serialize()

... extra arguments passed to zstd_cctx() or zstd_dctx() context initializers.
Note: These argument are only used when cctx or dctx is NULL

dst filename in which to serialize data. If NULL (the default), then serialize the
results to a raw vector

cctx ZSTD Compression Context created by zstd_cctx() or NULL. Default: NULL
will create a default compression context on-the-fly

use_file_streaming

Use the streaming interface when reading or writing to a file? This may reduce
memory allocations and make better use of mutlithreading. Default: FALSE

src Raw vector or filename containing a ZSTD compressed serialized representation
of an R object

dctx ZSTD Decompression Context created by zstd_dctx() or NULL. Default: NULL
will create a default decompression context on-the-fly.

Value

Raw vector of compressed serialized data, or NULL if file created with compressed data

Examples

Raw vector
vec <- zstd_serialize(mtcars)
zstd_unserialize(src = vec)

file
tmp <- tempfile()
zstd_serialize(mtcars, dst = tmp)
zstd_unserialize(src = tmp)

10 zstd_train_dict_compress

connection
tmp <- tempfile()
zstd_serialize(mtcars, dst = file(tmp))
zstd_unserialize(src = file(tmp))

zstd_train_dict_compress

Train a dictionary for use with zstd_compress() and
zstd_decompress()

Description

This function requires multiple samples representative of the expected data to train a dictionary for
use during compression.

Usage

zstd_train_dict_compress(
samples,
size = 1e+05,
optim = FALSE,
optim_shrink_allow = 0

)

Arguments

samples list of raw vectors, or length-1 character vectors. Each raw vector or string,
should be a complete example of something to be compressed with zstd_compress()

size Maximum size of dictionary in bytes. Default: 112640 (110 kB) matches the
default size set by the command line version of zstd. Actual dictionary created
may be smaller than this if (1) there was not enough training data to make use of
this size (2) optim_shrink_allow was set and a smaller dictionary was found
to be almost as useful.

optim optimize the dictionary. Default FALSE. If TRUE, then ZSTD will spend time
optimizing the dictionary. This can be a very length operation.

optim_shrink_allow

integer value representing a percentage. If non-zero, then a search will be car-
ried out for dictionaries of a smaller size which are up to optim_shrink_allow
percent worse than the maximum sized dictionary. Default: 0 means that no
shrinking will be done.

Value

raw vector containing a ZSTD dictionary

zstd_train_dict_serialize 11

Examples

This example shows the mechanics of creating and training a dictionary but
may not be a great example of when a dictionary might be useful
cars <- rownames(mtcars)
samples <- lapply(seq_len(1000), \(x) serialize(sample(cars), NULL))
zstd_train_dict_compress(samples, size = 5000)

zstd_train_dict_serialize

Train a dictionary for use with zstd_serialize() and
zstd_unserialize()

Description

Train a dictionary for use with zstd_serialize() and zstd_unserialize()

Usage

zstd_train_dict_serialize(
samples,
size = 1e+05,
optim = FALSE,
optim_shrink_allow = 0

)

Arguments

samples list of example R objects to train a dictionary to be used with zstd_serialize()

size Maximum size of dictionary in bytes. Default: 112640 (110 kB) matches the
default size set by the command line version of zstd. Actual dictionary created
may be smaller than this if (1) there was not enough training data to make use of
this size (2) optim_shrink_allow was set and a smaller dictionary was found
to be almost as useful.

optim optimize the dictionary. Default FALSE. If TRUE, then ZSTD will spend time
optimizing the dictionary. This can be a very length operation.

optim_shrink_allow

integer value representing a percentage. If non-zero, then a search will be car-
ried out for dictionaries of a smaller size which are up to optim_shrink_allow
percent worse than the maximum sized dictionary. Default: 0 means that no
shrinking will be done.

Value

raw vector containing a ZSTD dictionary

12 zstd_version

Examples

This example shows the mechanics of creating and training a dictionary but
may not be a great example of when a dictionary might be useful
cars <- rownames(mtcars)
samples <- lapply(seq_len(1000), \(x) sample(cars))
zstd_train_dict_serialize(samples, size = 5000)

zstd_version Get version string of zstd C library

Description

Get version string of zstd C library

Usage

zstd_version()

Value

String containing version number of zstd C library

Examples

zstd_version()

Index

zstd_cctx, 3
zstd_cctx_settings, 4
zstd_compress, 4
zstd_dctx, 6
zstd_dctx_settings, 7
zstd_decompress (zstd_compress), 4
zstd_dict_id, 7
zstd_info, 8
zstd_serialize, 9
zstd_train_dict_compress, 10
zstd_train_dict_serialize, 11
zstd_unserialize (zstd_serialize), 9
zstd_version, 12
zstdfile, 2

13

	zstdfile
	zstd_cctx
	zstd_cctx_settings
	zstd_compress
	zstd_dctx
	zstd_dctx_settings
	zstd_dict_id
	zstd_info
	zstd_serialize
	zstd_train_dict_compress
	zstd_train_dict_serialize
	zstd_version
	Index

