
Package: rmonocypher (via r-universe)
October 21, 2024

Type Package

Title Easy Encryption of R Objects using Strong Modern Cryptography

Version 0.1.7.9000

Maintainer Mike Cheng <mikefc@coolbutuseless.com>

Description Easy-to-use encryption of R objects using modern
cryptography. Objects are serialized and then encrypted using
'XChaCha20-Poly1305'
(<https://en.wikipedia.org/wiki/ChaCha20-Poly1305>) which
follows RFC 8439 for authenticated encryption
(<https://en.wikipedia.org/wiki/Authenticated_encryption>).
Cryptographic functions are provided by the 'monocypher' 'C'
library (<https://monocypher.org>).

URL https://github.com/coolbutuseless/rmonocypher

BugReports https://github.com/coolbutuseless/rmonocypher/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Depends R (>= 3.4.0)

Copyright This package includes the 'monocypher' library written by
Loup Vaillant, Michael Savage and Fabio Scotomi. See file
'inst/LICENSE-monocypher.md' for the license for 'monocypher'.

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://coolbutuseless.r-universe.dev

RemoteUrl https://github.com/coolbutuseless/rmonocypher

RemoteRef HEAD

RemoteSha 2d339f728bb5019eae2da338c5cb323612566eea

1

https://en.wikipedia.org/wiki/ChaCha20-Poly1305
https://en.wikipedia.org/wiki/Authenticated_encryption
https://monocypher.org
https://github.com/coolbutuseless/rmonocypher
https://github.com/coolbutuseless/rmonocypher/issues

2 argon2

Contents

argon2 . 2
decrypt . 3
encrypt . 4
encrypt_raw . 5
rbyte . 7

Index 8

argon2 Generate bytes from a password using Argon2 password-based key
derivation

Description

Argon2 is a resource intensive password-based key derivation scheme. A typical application is
generating an encryption key from a text password.

Usage

argon2(passphrase, salt = passphrase, length = 32, type = "chr")

Arguments

passphrase A character string used to derive the random bytes

salt 16-byte raw vector or 32-character hexadecimal string. A salt is data used as
additional input to key derivation which helps defend against attacks that use
pre-computed (i.e. rainbow) tables. Note: A salt does not need to be a secret.
See https://en.wikipedia.org/wiki/Salt_(cryptography) for more de-
tails. The ’salt’ may also be a non-hexadecimal string, in which case a real salt
will be created by using Argon2 with a default internal salt.

length Number of bytes to output. Default: 32

type Should the data be returned as raw bytes? Default: "chr". Possible values "chr"
or ’raw’

Value

raw vector of the requested length

Note

Using the same password with the same salt will always generate the same key. It is recommended
that a random salt be used.

https://en.wikipedia.org/wiki/Salt_(cryptography)

decrypt 3

Technical Note

The ’C’ version of the ARgon2 algorithm is configured with:

• Use the Argon2id variant of the algorithm

• single-threaded

• 3 iterations

• 100 megabytes of memory

See https://en.wikipedia.org/wiki/Argon2 and https://monocypher.org/manual/argon2
for more information.

Examples

For the sake of convenience for novice users, a salt will be
derived internally from the password.
argon2("my secret")

Calling 'argon2()' without a seed is equivalent to using the password
as the seed. This is not the best security practice
argon2("my secret", salt = "my secret")

Best practice is to use random bytes for the salt
This particular key can then only be recovered if the password and
the salt are known.
salt <- rbyte(16) # You'll want to save this value somewhere
argon2("my secret", salt = salt)

decrypt Decrypt an ecnrypted object

Description

Decrypt an ecnrypted object

Usage

decrypt(
src,
key = getOption("MONOCYPHER_KEY", default = NULL),
additional_data = NULL

)

https://en.wikipedia.org/wiki/Argon2
https://monocypher.org/manual/argon2

4 encrypt

Arguments

src Raw vector or filename

key The encryption key. This may be a character string, a 32-byte raw vector or a 64-
character hex string (which encodes 32 bytes). When a shorter character string
is given, a 32-byte key is derived using the Argon2 key derivation function. If
a key is not explicitly set by the user when calling the function, an attempt is
made to fetch 'MONOCYPHER_KEY' from the session global options.

additional_data

Additional data to include in the authentication. Raw vector or character string.
Default: NULL. This additional data is not included with the encrypted data,
but represents an essential component of the message authentication. The same
additional_data must be presented during both encryption and decryption for
the message to be authenticated. See vignette on ’Additional Data’.

Value

Decrypted, unserialized R object

Examples

key <- argon2('my key')
encrypt(mtcars, key = key) |>

decrypt(key = key)

encrypt Save an encrypted RDS

Description

Save an encrypted RDS

Usage

encrypt(
robj,
dst = NULL,
key = getOption("MONOCYPHER_KEY", default = NULL),
additional_data = NULL,
compress = c("none", "gzip", "bzip2", "xz")

)

Arguments

robj R object

dst Either a filename or NULL. Default: NULL write results to a raw vector

encrypt_raw 5

key The encryption key. This may be a character string, a 32-byte raw vector or a 64-
character hex string (which encodes 32 bytes). When a shorter character string
is given, a 32-byte key is derived using the Argon2 key derivation function. If
a key is not explicitly set by the user when calling the function, an attempt is
made to fetch 'MONOCYPHER_KEY' from the session global options.

additional_data

Additional data to include in the authentication. Raw vector or character string.
Default: NULL. This additional data is not included with the encrypted data,
but represents an essential component of the message authentication. The same
additional_data must be presented during both encryption and decryption for
the message to be authenticated. See vignette on ’Additional Data’.

compress compression type. Default: ’none’. Possible values: ’none’, ’gzip’, ’bzip2’, ’xz’

Value

Raw vector containing encrypted object written to file or returned

Examples

key <- argon2('my key')
encrypt(mtcars, key = key) |>

decrypt(key = key)

encrypt_raw Low Level Encryption/Decryption or Raw Vectors with ’Authenticated
Encryption with Additional Data’ (AEAD)

Description

This is a low-level function for encrypting/decrypting data using ’Authenticated Encryption with
Additional Data’ (AEAD). This encryption scheme assures data confidentiality (privacy) i.e. the
encrypted data is impossible to understand without the knowledge of the secret key.

The authenticity of the message is also assured i.e. the message is unforgeable.

Additional data can optionally be included in the encryption process. This data is not encrypted, nor
is it included with the output. Instead this data is a part of the message authentication. See below
for more details.

Usage

encrypt_raw(
x,
key = getOption("MONOCYPHER_KEY", default = NULL),
additional_data = NULL

)

decrypt_raw(

6 encrypt_raw

src,
key = getOption("MONOCYPHER_KEY", default = NULL),
additional_data = NULL

)

Arguments

x Data to encrypt. Character string or raw vector.

key The encryption key. This may be a character string, a 32-byte raw vector or a 64-
character hex string (which encodes 32 bytes). When a shorter character string
is given, a 32-byte key is derived using the Argon2 key derivation function. If
a key is not explicitly set by the user when calling the function, an attempt is
made to fetch 'MONOCYPHER_KEY' from the session global options.

additional_data

Additional data to include in the authentication. Raw vector or character string.
Default: NULL. This additional data is not included with the encrypted data,
but represents an essential component of the message authentication. The same
additional_data must be presented during both encryption and decryption for
the message to be authenticated. See vignette on ’Additional Data’.

src Raw vector of data to decrypt

Details

Implements authenticated encryption as documented here https://monocypher.org/manual/aead

Value

encrypt_raw() returns a raw vector containing the nonce, mac and the encrypted data

decrypt_raw() returns the decrypted data as a raw vector

Technical Notes

The encryption functions in this package implement RFC 8439 ChaCha20-Poly1305 authenticated
encryption with additional data. This algorithm combines the ChaCha20 stream cipher with the
Poly1305 message authentication code.

Examples

Encrypt/Decrypt a string or raw vector
Data to encrypt
dat <- "Follow the white rabbit" |> charToRaw()

Create an encryption key
key <- argon2("my secret key") # Keep this key secret!
key

Encrypt the data
enc <- encrypt_raw(dat, key)
enc

https://monocypher.org/manual/aead

rbyte 7

Using the same key, decrypt the data
decrypt_raw(enc, key) |> rawToChar()

rbyte Generate random bytes from the platform-specific cryptographically
secure pseudorandom number generator

Description

Generate random bytes from the platform-specific cryptographically secure pseudorandom number
generator

Usage

rbyte(n, type = "chr")

Arguments

n Number of random bytes to generate. Note: if the entropy pool is exhausted on
your system it may not be able to provide the requested number of bytes - in this
case an error is thrown.

type Type of returned values - ’raw’ or "chr". Default: "chr".

Value

A raw vector or a hexadecimal string

Platform notes

The method used for generating random values varies depending on the operating system (OS):

• For macOS and BSDs: arc4random_buf()

• For linux: syscall(SYS_getrandom())

• For win32: BCryptGenRandom()

All these random number generators are internally seeded by the OS using entropy gathered from
multiple sources and are considered cryptographically secure.

Examples

rbyte(16, type = "chr")
rbyte(16, type = 'raw')

Index

argon2, 2

decrypt, 3
decrypt_raw (encrypt_raw), 5

encrypt, 4
encrypt_raw, 5

rbyte, 7

8

	argon2
	decrypt
	encrypt
	encrypt_raw
	rbyte
	Index

